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Note 

A Numerical Algorithm for Hamiltonian Systems 

1. INTRODUCTION 

A frequent problem in numerical analysis is that of computing particle trajec- 
tories for Hamiltonian (conservative) systems. A number  of distinct algorithms are 
known and  the one  discussed below is not new, but is chosen to illustrate the 
general  procedure. By a  reinterpretation of the algorithm a  more accurate solution 
to the problem, as judged by the constancy of the energy, is obtained. In brief, 
rather than try to find the best algorithm for a  particular Hamiltonian, the proce- 
dure is to choose an  algorithm and  ask what Hamiltonian system it best represents. 
The  basic method is straightforward and  is illustrated in the next section with 
respect to a  simple system. Some generalization are discussed in Section 3. 

2. GENERAL METHOD 

We consider a  Hamiltonian system and  write the equations of motion in the form 

which corresponds to the Hamiltonian 

H = p*/2 + Q(q). 

The  simplest Euler finite difference scheme is 

9n+1=9n+hPm 

Pn+l=Pn+W9,)9 

(2) 

(3) 

(4) 

where h  is the time  step length. This scheme suffers from three ma jor disadvantages: 

(a) The  Jacobian J defined by the determinant 
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is equal to 1 - h’F’(q,), where the dash denotes differentiation with respect to the 
argument. A value of J< 1 ( > 1) leads to a volume contraction (expansion) in 
phase space, neither being a property of Hamiltonian systems. 

(b) The above set of equations can be rewritten in the form 

qn=qn+I -hpm 

Pn=Pn+I - W’(qJ. 

Comparison with (3) and (4) shows that this set is not time-reversal-invariant, that 
is, not of the same form with the interchange of n and IZ + 1 and + h and -h. (For 
invariance one would need F(q,+ ,) in the above set.) 

(c) The energy, defined by 

E, = ~22 + @(qJ (5) 

is not independent of n, and in fact, as is readily shown 

E n+ I -En =: CF2(q,) - piJ%H + O(h3). (6) 

The energy E ( = H) of a Hamiltonian system is of course constant. 
The first two disadvantages, (a) and (b), can be overcome by considering the 

finite difference equations 

an+ I = p,hF(q, + hpJ2). (8) 

The energy is still not constant, but since 

E ,,+I-En= - Fr$+ FF’) + O(h4), 

the error is one order less in h than the original scheme. 
The difference scheme given by (7) and (8) is fairly standard and in fact Ruth [l] 

has drawn attention to the fact that it satisfies the canonical character of 
Hamiltonian systems, namely J = 1. 

Although the finite difference scheme (7), (8) does not solve the original 
Hamiltonian it is time-reversal-invariant and the Jacobian is unity. Thus it is 
interesting to ask what continuous systems of equations it most closely represents. 
To help answer this we consider a continuous approximation to the equations by 
writing qns q(nh) =q(~) and making a Taylor series of q,,+, about q(t). In this 
manner (7), (8) reduce to 

z= p( 1 + h2Fq/12) + O(h4) (10) 
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$f= F- h2(FF,/6 + p2F,,/24) + O(h4), (11) 

where F, E aF/aq. To O(h4) these are equivalent to a Hamiltonian system with 

H(p, q) = (p*/2)( 1 + h2F,/12) + Q(q) + h2F2/12. (12) 

In this form the system is equivalent to one with a spatially variable mass. This 
undesirable feature may be removed by making a contact transformation defined by 
a change of variables from (q, p) to (Lf, p), where 

P = PC 1 - h2K,kWW (13) 
and 

cj = q - h2F(q)/24. (14) 

The new Hamiltonian is then 
R = p2/2 + 6(q) (15) 

with 

G(q) = Q(q) + h2F2(q)/24. (16) 

To O(h2), the finite difference scheme (7) and (8) is equivalent to the original 
Hamiltonian system defined by (2). However to O(h4) this same finite difference 
scheme is equivalent to a Hamiltonian system defined by R and not by H. 

Thus to obtain increased accuracy, but still use (7) and (8) with the same value 
of h, we must identify 8, and not @ , with the real potential (the problem we really 
want to solve) and 4, p with real physical position and momentum variables. This 
means that the potential @ , that appears in (7) and (8), is an effective potential; it 
is expressed in terms of 6, the real potential, using (16). To O(h4) we have 

Q(q) = G(q) - h26;/24. (17) 

Once the finite difference equations are solved the real coordinates 4, p are obtained 
from (13) and (14). Again to O(h4), we have (~5, s Mjaq) 

cj = q + h26-,/24 (18) 

and 

p = p( 1 - h26-,,/24). (19) 

Most importantly it is found that the true energy E= p2/2 + G(q) is constant to 
O(h’). 

The whole procedure is illustrated (in the Appendix) by considering the 
harmonic oscillator. 
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3. GENERALIZATION 

An obvious’ extension is to include explicitly the terms of O(h4) in (10) and (11). 
This produces, after a suitable contact transformation, an effective Hamiltonian 
which may be identified with the real Hamiltonian. In this way it is possible to find 
a finite difference scheme in which the energy is conserved to 0(/z’). 

Another extension is to treat a 2N-dimensional system with coordinates (qi, Pi) 
for i= 1,2, . . . . N. The difference scheme, chosen in analogy to (7) and (8), is 

and 

4i.n + 1 =4i,n+~tPi,n+Pi,,i+I) (20) 

P r,n+ I = Pi,,*-h@q,(qj,n +hpj,n/2), (21) 

where Qy, denotes differentiation with respect to qi. The potential @ is related to the 
real potential 6 by 

@ = 6 - (h2,24) ; (S;,,)’ 

and the contact transformation between the variables is such that 

4; = qi + (h2/24) 6-yI 

and 

(22) 

Pi = Pi - (h2/24) C Pj $‘yg p,. (23) 

The energy is constant to O(h’). 
In this paper a simple difference scheme, namely (7) and (8), has been used to 

illustrate the procedure of introducing an effective potential and coordinates, 
related to the real potential and coordinates by a canonical transformation. 
However, since the procedure only relies on the finite difference scheme being 
time-reversal-invariant with a Jacobian of unity, it is readily applicable to other 
difference schemes sharing these properties. 

APPENDIX 

To illustrate the above procedure, consider the problem of solving the time 
evolution of a harmonic oscillator. The appropriate potential that appears in (2) is 
given by @ = 02q2/2, where w is a constant. The exact solution of this problem is 
of course well known and takes the form 

q = A cos(ot + Y), (20) 
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where A and Y are constants. The corresponding energy E = A2m2/2 and is 
independent of time. 

Equations (3) and (4) may also be solved (F(q)= -02q) to give 

q = Ar” cos(Qt + Y) and E = A2r2”02/2, 

where r2 = 1 + h2m2, cos(h&) = l/,/m with t = nh. This gives the effective 
frequency of oscillation to be 6, not CO, where to O(h4), Q = o( 1 - h2w2/3). As is 
well known the weakness of this algorithm is that the energy E steadily increases 
with the number of iterates. 

The solution of (7) and (8) is of the form q = A cos(Ot + Y), where cos(h&) = 
1 - h2w’/2 so that to O(h4), d = w( 1 - 7h2w2/24). The energy E= (A2w2/2) 
(1 + (h2w2/4) sin(& + Y)) which, although a function of time, is now bounded. 

To use the procedure suggested in this paper it is first necessary to identify 4 as 
the true potential ( = w2q2/2) and use (17) to construct the effective potential @  
which appears in the algorithm. Then to O(h4), @= (w2q2/2)(1 - h2W2/12). With 
this form for Q, in (7) and (8) the equations may be solved for q and p to give 
q = A, cos(& + ul), where cos(h&) = 1 - h2m2/2 + h4w4/24, so that to O(h4), 0 = o. 
From (18) it is found that S = (1 + h2m2/24)q so that q is also a harmonic function. 
The energy, defined by (5) (but in terms of 4 and p) is readily calculated and found 
to be constant to O(h’), and equal to A202/2. 

Thus the procedure advocated in this paper gives, for the particular case of the 
harmonic oscillator, an exact solution with constant energy to O(hS). 
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